Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Interfacial interaction of solid nickel with liquid bismuth and Bi-base alloys

Identifieur interne : 000944 ( France/Analysis ); précédent : 000943; suivant : 000945

Interfacial interaction of solid nickel with liquid bismuth and Bi-base alloys

Auteurs : RBID : Pascal:05-0140163

Descripteurs français

English descriptors

Abstract

The dissolution process of nickel in liquid bismuth and a 51 %Bil2%Sn-5%In-2%Zn alloy was investigated by the rotating-disc technique at 300 and 350°C. The solubility values of nickel in bismuth and its alloy were found to be very different, while the dissolution rate constants were rather close. Appropriate diffusion coefficients were estimated. With bismuth as a melt material, the NiBi3 intermetallic layer is formed at the interface of nickel and the saturated or undersaturated melt at holding times up to 3600 s. The NiBi phase is found to be missing. A simple mathematical equation is proposed to evaluate the NiBi3 layer thickness in the case of undersaturated melts. With a 51%Bi-42%Sn-5%In-2%Zn alloy as a melt material, a very thin intermetallic layer of complicated chemical composition occurs at the Ni-alloy interface. With saturated melts, its growth-rate constant is 5.5 x 10-6m2s-1 at 350°C, whereas in undersaturated melts, the intermetallic phase does not form at all, if the liquid agitation is sufficiently strong. The rupture strength of the nickel-to-alloy joints is around 25 MPa. Small additions of Sb, Te and Se (2% in total) to the alloy exert a considerable influence on the intermetallic-layer composition, but have minimal impact on its thickness.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:05-0140163

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Interfacial interaction of solid nickel with liquid bismuth and Bi-base alloys</title>
<author>
<name sortKey="Dybkov, V I" uniqKey="Dybkov V">V. I. Dybkov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physical Chemistry of Inorganic Materials, Institute for Problems of Materials Science</s1>
<s2>03180 Kyiv</s2>
<s3>UKR</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Ukraine</country>
<wicri:noRegion>03180 Kyiv</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Barmak, K" uniqKey="Barmak K">K. Barmak</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Department of Materials Science and Engineering, Carnegie Mellon University</s1>
<s2>Pittsburgh, PA 15213</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Pittsburgh</settlement>
<region type="state">Pennsylvanie</region>
</placeName>
<orgName type="university">Université Carnegie-Mellon</orgName>
</affiliation>
</author>
<author>
<name sortKey="Lengauer, W" uniqKey="Lengauer W">W. Lengauer</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institute for Chemical Technologies and Analytics, Vienna University of Technology</s1>
<s2>1060 Vienna</s2>
<s3>AUT</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>1060 Vienna</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gas, P" uniqKey="Gas P">P. Gas</name>
<affiliation wicri:level="3">
<inist:fA14 i1="04">
<s1>L2MP-CNRS, Faculté des Sciences St Jerome, Case 142</s1>
<s2>13397 Marseille</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">05-0140163</idno>
<date when="2005">2005</date>
<idno type="stanalyst">PASCAL 05-0140163 INIST</idno>
<idno type="RBID">Pascal:05-0140163</idno>
<idno type="wicri:Area/Main/Corpus">00A587</idno>
<idno type="wicri:Area/Main/Repository">009A80</idno>
<idno type="wicri:Area/France/Extraction">000944</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0925-8388</idno>
<title level="j" type="abbreviated">J. alloys compd.</title>
<title level="j" type="main">Journal of alloys and compounds</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antimony additions</term>
<term>Bismuth</term>
<term>Bismuth base alloys</term>
<term>Chemical composition</term>
<term>Crystal growth from melts</term>
<term>Diffusion coefficient</term>
<term>Growth rate</term>
<term>Holding time</term>
<term>Indium selenides</term>
<term>Interfaces</term>
<term>Intermetallic compounds</term>
<term>Melts</term>
<term>Nickel alloys</term>
<term>Rotating disk</term>
<term>Rupture strength</term>
<term>Solubility</term>
<term>Tellurium additions</term>
<term>Thickness</term>
<term>Thin films</term>
<term>Transition element alloys</term>
<term>Transition elements</term>
<term>Zinc alloys</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Disque tournant</term>
<term>Solubilité</term>
<term>Coefficient diffusion</term>
<term>Interface</term>
<term>Durée maintien</term>
<term>Epaisseur</term>
<term>Composition chimique</term>
<term>Croissance cristalline en phase fondue</term>
<term>Taux croissance</term>
<term>Résistance rupture</term>
<term>Addition antimoine</term>
<term>Addition tellure</term>
<term>Indium séléniure</term>
<term>Nickel alliage</term>
<term>Bismuth</term>
<term>Alliage base bismuth</term>
<term>Zinc alliage</term>
<term>Etat fondu</term>
<term>Composé intermétallique</term>
<term>Couche mince</term>
<term>Métal transition</term>
<term>Métal transition alliage</term>
<term>Ni</term>
<term>Bi</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Bismuth</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The dissolution process of nickel in liquid bismuth and a 51 %Bil2%Sn-5%In-2%Zn alloy was investigated by the rotating-disc technique at 300 and 350°C. The solubility values of nickel in bismuth and its alloy were found to be very different, while the dissolution rate constants were rather close. Appropriate diffusion coefficients were estimated. With bismuth as a melt material, the NiBi
<sub>3</sub>
intermetallic layer is formed at the interface of nickel and the saturated or undersaturated melt at holding times up to 3600 s. The NiBi phase is found to be missing. A simple mathematical equation is proposed to evaluate the NiBi
<sub>3</sub>
layer thickness in the case of undersaturated melts. With a 51%Bi-42%Sn-5%In-2%Zn alloy as a melt material, a very thin intermetallic layer of complicated chemical composition occurs at the Ni-alloy interface. With saturated melts, its growth-rate constant is 5.5 x 10
<sup>-6</sup>
m
<sup>2</sup>
s
<sup>-1</sup>
at 350°C, whereas in undersaturated melts, the intermetallic phase does not form at all, if the liquid agitation is sufficiently strong. The rupture strength of the nickel-to-alloy joints is around 25 MPa. Small additions of Sb, Te and Se (2% in total) to the alloy exert a considerable influence on the intermetallic-layer composition, but have minimal impact on its thickness.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0925-8388</s0>
</fA01>
<fA03 i2="1">
<s0>J. alloys compd.</s0>
</fA03>
<fA05>
<s2>389</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Interfacial interaction of solid nickel with liquid bismuth and Bi-base alloys</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>DYBKOV (V. I.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BARMAK (K.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LENGAUER (W.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GAS (P.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physical Chemistry of Inorganic Materials, Institute for Problems of Materials Science</s1>
<s2>03180 Kyiv</s2>
<s3>UKR</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Materials Science and Engineering, Carnegie Mellon University</s1>
<s2>Pittsburgh, PA 15213</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Institute for Chemical Technologies and Analytics, Vienna University of Technology</s1>
<s2>1060 Vienna</s2>
<s3>AUT</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>L2MP-CNRS, Faculté des Sciences St Jerome, Case 142</s1>
<s2>13397 Marseille</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>61-74</s1>
</fA20>
<fA21>
<s1>2005</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>1151</s2>
<s5>354000127068270120</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2005 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>14 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>05-0140163</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of alloys and compounds</s0>
</fA64>
<fA66 i1="01">
<s0>CHE</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The dissolution process of nickel in liquid bismuth and a 51 %Bil2%Sn-5%In-2%Zn alloy was investigated by the rotating-disc technique at 300 and 350°C. The solubility values of nickel in bismuth and its alloy were found to be very different, while the dissolution rate constants were rather close. Appropriate diffusion coefficients were estimated. With bismuth as a melt material, the NiBi
<sub>3</sub>
intermetallic layer is formed at the interface of nickel and the saturated or undersaturated melt at holding times up to 3600 s. The NiBi phase is found to be missing. A simple mathematical equation is proposed to evaluate the NiBi
<sub>3</sub>
layer thickness in the case of undersaturated melts. With a 51%Bi-42%Sn-5%In-2%Zn alloy as a melt material, a very thin intermetallic layer of complicated chemical composition occurs at the Ni-alloy interface. With saturated melts, its growth-rate constant is 5.5 x 10
<sup>-6</sup>
m
<sup>2</sup>
s
<sup>-1</sup>
at 350°C, whereas in undersaturated melts, the intermetallic phase does not form at all, if the liquid agitation is sufficiently strong. The rupture strength of the nickel-to-alloy joints is around 25 MPa. Small additions of Sb, Te and Se (2% in total) to the alloy exert a considerable influence on the intermetallic-layer composition, but have minimal impact on its thickness.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Disque tournant</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Rotating disk</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Disco giratorio</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Solubilité</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Solubility</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Coefficient diffusion</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Diffusion coefficient</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Coeficiente difusión</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Interface</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Interfaces</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Durée maintien</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Holding time</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Tiempo funcionamiento</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Epaisseur</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Thickness</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Composition chimique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Chemical composition</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Croissance cristalline en phase fondue</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Crystal growth from melts</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Taux croissance</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Growth rate</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Résistance rupture</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Rupture strength</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Resistencia ruptura</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Addition antimoine</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Antimony additions</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Addition tellure</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Tellurium additions</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Indium séléniure</s0>
<s2>NK</s2>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Indium selenides</s0>
<s2>NK</s2>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Nickel alliage</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Nickel alloys</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Bismuth</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Bismuth</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Alliage base bismuth</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Bismuth base alloys</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Zinc alliage</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Zinc alloys</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Etat fondu</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Melts</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Composé intermétallique</s0>
<s5>20</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Intermetallic compounds</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>21</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Métal transition</s0>
<s5>48</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Transition elements</s0>
<s5>48</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Métal transition alliage</s0>
<s5>49</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Transition element alloys</s0>
<s5>49</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Ni</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Bi</s0>
<s4>INC</s4>
<s5>53</s5>
</fC03>
<fN21>
<s1>094</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/France/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000944 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/France/Analysis/biblio.hfd -nk 000944 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    France
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:05-0140163
   |texte=   Interfacial interaction of solid nickel with liquid bismuth and Bi-base alloys
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024